Application of mixed kernels function (MKF) based support vector regression model (SVR) for CO2 – Reservoir oil minimum miscibility pressure prediction
نویسندگان
چکیده
منابع مشابه
Support vector regression for prediction of gas reservoirs permeability
Reservoir permeability is a critical parameter for characterization of the hydrocarbon reservoirs. In fact, determination of permeability is a crucial task in reserve estimation, production and development. Traditional methods for permeability prediction are well log and core data analysis which are very expensive and time-consuming. Well log data is an alternative approach for prediction of pe...
متن کاملan application of equilibrium model for crude oil tanker ships insurance futures in iran
با توجه به تحریم های بین المملی علیه صنعت بیمه ایران امکان استفاده از بازارهای بین المملی بیمه ای برای نفتکش های ایرانی وجود ندارد. از طرفی از آنجایی که یکی از نوآوری های اخیر استفاده از بازارهای مالی به منظور ریسک های فاجعه آمیز می باشد. از اینرو در این پایان نامه سعی شده است با استفاده از این نوآوری ها با طراحی اوراق اختیارات راهی نو جهت بیمه گردن نفت کش های ایرانی ارائه نمود. از آنجایی که بر...
Effect of CO2 Concentration in Injecting Gas on Minimum Miscibility Pressure: Compositional Model and Experimental Study
For technical and economic success of miscible gas injection projects, an accurate laboratory measurement of Minimum Miscibility Pressure (MMP) at reservoir conditions is essential. On the other hand, compositional reservoir simulator is a useful tool in gas injection studies and prediction of MMP. The main goal of this paper is to describe a procedure to generate a three phase sequential t...
متن کاملA hybrid neural–genetic algorithm for predicting pure and impure CO2 minimum miscibility pressure
"> Accurate prediction of the minimum miscibility pressure (MMP) in a gas injection process is crucial to optimizing the management of gas injection projects. Because the <span style="font-size: 10pt; ...
متن کاملBubble Pressure Prediction of Reservoir Fluids using Artificial Neural Network and Support Vector Machine
Bubble point pressure is an important parameter in equilibrium calculations of reservoir fluids and having other applications in reservoir engineering. In this work, an artificial neural network (ANN) and a least square support vector machine (LS-SVM) have been used to predict the bubble point pressure of reservoir fluids. Also, the accuracy of the models have been compared to two-equation stat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fuel
سال: 2016
ISSN: 0016-2361
DOI: 10.1016/j.fuel.2016.07.030